
Virtual data generation based on a human model for

machine learning applications

K. Buys1, J. Hauquier2, C. Cagniart3, T. Tuytelaars4, and J. De Schutter1

1Dep. of Mechanical Engineering, KU Leuven, Belgium
2eJibe.net, Belgium

3Technical University of Munich, Germany
4Dep. of Electrical Engineering, KU Leuven, Belgium

Abstract

Most computer vision algorithms for human detection are grounded on a intensively
data driven machine learning pipeline. Creating this pipeline is a time and computationally
intensive step, so is collecting all the input data for this. Often manually annotated real
life images are used as input data, this poses two drawbacks, first only a limited number of
datasets are available, secondly this is time intensive or expensive to acquire. This paper
presents a work flow to generate input data for human pose detection machine learning
algorithms that is grounded on real human motions but is generated in a virtual environment
with an accurate sensor model.
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1 Introduction

Today in the computer vision and gesture recog-
nition field a large number of detection algo-
rithms rely on a data driven machine learning
approach to train the detector. This requires
training data consisting out of a series of sen-
sor measurements (images or motion capture
data or ...) together with the ground truth for
these measurements.

Labeling these measurements is often an in-
tensive manual process that can be crowd sourced
and distributed with services like Amazons Me-
chanical Turk [1, 2], however then redundancy
is needed to get exact ground truth as you are
dependent on the dedication of the worker ac-
cepting the task. Patient confidentiality can
pose an issue here. A number of services try
to provide this redundancy [3, 4] or provide a
framework for easier integration [5].

As shown earlier by Shotton et al. [6, 7] for

a number of machine learning algorithms this
data can also be created in a virtual model as
long as the sensor model is well known and the
input data shows enough similarities with the
real world, thus creating an accurate virtual
representation of a real life measurement. How-
ever Shotton et al. didn’t release their training
framework publicly.

This paper presents an open source training
framework to generate virtual measurements of
humans with a Primesense [8] based RGB-D
camera model (like Microsoft Kinect [9] or Asus
Xtion Pro Live [10]).

The pipeline consists out of the Makehu-
man [11] model (which was evaluated in prior
work by Buys et al. [12, 13]) that is mapped
on human motion capture data in BVH files.
BVH files are widely accepted as a standard
and are freely available (like the CMU mocap
dataset [14]).

First in section 2 the current state of the art
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will be discussed, after in section 3 we’ll discuss
the system architecture.

2 Related work

When replacing real life data with virtually cre-
ated data for machine learning it is important
that the created data is still realistic enough to
create an accurate representation. For this im-
plementation we fixed ourselves on devices with
an camera architecture from Primesense. The
manufacturer hasn’t released extended specifi-
cations for these devices, but they have been
studied quantitatively by Bainbridge-Smith and
Sumar [15]. This study provides many camera
specifications. The RGB-D camera has a built-
in RGB-CCD camera and projected IR light
triangulation depth sensor. The field of view
is 58◦ horizontal, 45◦ vertical and 70◦ diagonal
and it runs at a frame rate of 30 frames per
second. The output of the RGB camera is a
680x480 pixel image with a 32 bit color value.
The depth image is streamed at 30 frames per
second at a resolution of 640x480 in a 16 bit
image of which only eleven bits are used.

Furthermore, Khoshelham [16] and Kramer
et al. [17] did some accuracy analysis of the
depth data on a Kinect. They concluded that
the density of points in the point cloud de-
creases with increasing distance to the IR cam-
era. The reason for this is the depth resolution,
which is low at large distance. It is seven cen-
timeter at the advised maximum range of five
meter with an additional four centimeter noise
on the measurement. It is important for our
realistic simulation to represent these quanti-
zation effects in the data.

Gschwandtner et al. [18, 19] presents a very
accurate model of a Microsoft Kinect in their
Blensor framework [20] which is an extension
to Blender [21] that fixes the disparity quanti-
zation on a 1/8 pixel resolution and very accu-
rately captures the parallax effect around ob-
jects. However it doesn’t consider the correla-
tion window (9x9 or 9x7) of the on-board hard-
ware matching algorithm between the IR pro-
jector and the IR camera. And still additional
noise needs to be added because the diffraction
grating of the projector is very likely to have
some minimal distortions from the manufactur-
ing process.

A number of other simulation frameworks

Figure 2: Ground truth output image, every
color matches a label

exist that try to give a virtual implementa-
tion of a real life sensor. These frameworks
like MORSE [22, 23, 24] (which is also based
on Blender [25]) and Gazebo [26, 27] aim for a
multi robot simulation environment and offer a
large overhead in communication aspects.

3 System overview

Two versions where made of the system, first a
component oriented system in the ROS frame-
work [28] that is connected as seen in the sys-
tem diagram in figure 1. In the second version
the system is fully integrated into MakeHuman
and can be loaded as a plugin.

The first version can be used in a command
line interface on a server with the advantage to
facilitate distributed calculation on a cluster,
the second can only be run in a GUI with the
advantage of providing more feedback to the
user.

The system takes two inputs, the human
avatar (mesh with kinematics) and human mo-
tion capture files and output two files for each
pose, a depth image and a ground truth image,
this can be seen in figure 1.

3.1 BVH files

The input data obtained from motion capture
sources will be provided in the Biovision hier-
archical data file format (BVH). BVH files can
be found bought from specialized motion cap-
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Figure 1: Generation pipeline of the component oriented implementation. A mesh in generated
in MakeHuman and mapped onto motion capture data from BVH files in Blender. These meshes
are then rendered in an OpenGL environment.

ture providers [29] or extracted from existing
datasets [14, 30, 31]. It is a commonly used
textual format that is relatively easy to under-
stand and parse, it declares in the first part
the rest pose and in a second part the motion
data . It is a joint-based format (in contrast
with bone-based formats) that describes con-
nected joints in a hierarchic manner. Bones are
defined implicitly as the relation between each
two joints, where the relative offset from the
parent joint to the first child is the bone length
and rest-pose direction. Joint offsets and ro-
tations are defined in a local manner, relative
to the parent joint, so in order to calculate the
full transformation of a joint in world-space co-
ordinates one needs to propagate the matrix
calculations from a joint up till the root joint.
To finish the bones at the leaf nodes, special
end connector joints are used. Since mostly the
rotations matter for applying a pose (except for
the root bone that can be translated to make a
character move), a rotation on a joint or a bone
is essentially the same.

Porting this file format poses two problems,
first the rest pose can be different, secondly the
kinematics (rig) can be different (fig. 3). The
default rig is the one used in makehuman and
is called the MHX rig.

Figure 3: As kinematics can be different a re-
targetting needs to be applied, here for the
Carnegie Mellon University Motion Capture
format (CMU MB) to MakeHuman Exchange
format (MHX)
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3.2 Retargetting

A mapping between a source and a target rig
can be as simple as a one-to-one mapping be-
tween a joint in the source rig to the target rig,
referencing them by name, together with a roll
correction value to account for the difference
in rest pose (most conventional rest pose varia-
tions are the T stance with either legs apart or
held together as illustrated in figure 3).

Each joint of the BVH file should be ad-
dressed (while some MHX target rig joints can
be omitted) but can be mapped to ”None”, in-
dicating they are not mapped onto a joint on
the target rig. Care needs to be taken when
doing this, as the rotation of the parent joint
actually defines how a bone is rotated. When a
BVH joint is mapped to ”None”, but the chil-
dren of that joint are mapped onto the target
rig, the rotation values need to be accumulated
into the parent bone of the targeted MHX rig.

However because of the varying nature of
the joint hierarchies defined in BVH files, we
need to account for the differences in skeleton
when mapping the pose transformations onto
the skeleton of our base mesh. The implemented
approach is based on the work of Monzani et
al. [32] where retargetting works using an indi-
rection in the form of an intermediary skeleton,
and the work of Feng et al. [33] and Hecker et
al. [34].

Because of the often redundant poses in BVH
files we sparsify the original file with a minimal
angular difference required on the joint angles.
As the vector of joint angles is the input for
this sparsify operation, this is a time consum-
ing step as each new vector is iterated over all
accepted vectors. However this only needs to be
done once for all the poses and can be kept as
the base mesh deforms. Failing to do this would
bias the machine learning techniques giving an
incorrect information gain during the learning.

3.3 Human base mesh

The mesh structure defines the look of the per-
son, as demonstrated in earlier work [12, 13],
we can acquire this look in an automated fash-
ion. We use the MakeHuman mesh as the base
mesh and use the MakeHuman mesh deforma-
tion options in the GUI to define a number of
meshes (figure 4 for which to generate the out-
put data. This allows the user to select meshes

Figure 4: The MakeHuman base mesh allows
for natural deformation.

Figure 5: The MakeHuman base mesh showing
vertex labels.

on age, gender, etnicity, ...
The output data needs to be accompanied

with a ground truth image, for this the user
needs to declare his body part labels. This fo-
cuses on a per-vertex labeling of body parts
on the MH base mesh. The idea is to assign
each vertex of the body to at least one vertex
group, named after the user body part decla-
ration (Fig. 5). Each vertex within the same
group will be assigned the same vertex color,
that can be used in a GLSL fragment shader
for rendering out the correct colors for use in
the test data.

This rendering approach also allows efficient
rendering using only one draw call per gener-
ated image (as the model can be rendered in one
batch). Individual body parts are marked us-
ing edges that were marked as seams, allowing
face selection of the faces within one body part.
The vertices of each body part were added to
vertex groups with a corresponding body part
name, and are assigned a diffuse colored mate-
rial per body part. Future work includes to in-
stance double vertices where vertices are shared
among vertex groups, so that they can be given
separate vertex colors for rendering.

Additionally this labeling has also been done
on the clothes helpers (that are an implicit part
of the base mesh, figure 6), which could allow
automatic body part tagging on clothed hu-
mans.
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Figure 6: The MakeHuman base mesh showing
vertex labels on clothing.

3.4 Rigging

To apply a pose from a skeleton onto a mesh
(in our case the human base mesh) we need to
transfer the joint transformations (mostly rota-
tions) onto the body vertices that are mapped
to that joint. This can be done in a very sim-
ple way by defining a one-to-one mapping of
each vertex to a bone and rigidly transform-
ing those vertices along with their bones. This
will, however, not result in a visually pleasing
result. Therefore we use a technique called rig-
ging [35, 36]. Rigging is a concept commonly
used in 3D animation where vertices can be as-
signed to a number of bones, together with a
weight value between 0 and 1. This weight is
a scalar that determines how much of the bone
rotation is applied to that vertex. Usually the
sum of weights for a vertex amounts to 1 (eg.
the weights are normalized). By storing the
weight values in vertices of fixed length, we can
increase the performance of rigging calculations
using SIMD operations. The rigging needs to
be optimized since it needs to be recalculated
every frame of the animations. In real-time 3D
applications, rigging is often calculated on the
GPU using shaders (and referred to as hard-
ware rigging), where a limited amount of bone
weights is preferred (eg. 3).

In the component based implementation the
rigging is done scripted in Blender and can be
adjusted by the user with weight painting, in
the MakeHuman implementation the rigging is
fixed on the MHX mesh and is connected to the
vertex indices.

Figure 7: The depth image discretization.

3.5 Rendering

As a final step, the articulated avatar is placed
in front of a virtual camera in an OpenGL envi-
ronment to create an accurate virtual measure-
ment. For this an accurate virtual represen-
tation of the camera was build taking into ac-
count the noise model and the quantization and
triangulation effects that occur on the real cam-
era. This step takes the intrinsic and extrinsic
camera calibration as input together with the
deformation matrix.

In the component based implementation this
is done in a stand-alone OpenGL application
that takes a calibration matrix and a deformed
and posed mesh as input. This is done in a
stand-alone fashion to avoid the overhead of
Blender and makes it easier to distribute over
a computer cluster as each unit in the cluster
keeps it’s own OpenGL environment and calcu-
lates a section of the poses.

The MakeHuman plugin version uses the
OpenGL environment available in MakeHuman
from which the Z-buffer is loaded on which the
discretization effects are performed. This dis-
cretization can be seen in figure 7.

4 Results

The implemented pipeline was successfully tested
to train randomized decision forests (RDF) and
ferns to achieve human pose detection as de-
scribed extensively by Shotton et al. [7] and
Buys et al. [37]. As shown by Shotton et al.
the depth image can be extensively discretized
(up to the level of a simple binary image). We
learned a RDF based on 180k images generated
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Figure 10: Result image of the random deci-
sion forest labeling learned with virtual train-
ing data.

in the presented pipeline, a set of example im-
ages can be seen in figure 8 and figure 9.

An example of the end result labeling with
the RDF based on real life input data can be
seen in figure 10.

The framework presented in this paper will
be available publicly at https://github.com/
KoenBuys. A link to the output data will be-
come available on http://people.mech.kuleuven.

be/~kbuys/ allowing for users to directly start
their machine learning algorithms.

5 Conclusion

We’ve presented an approach for generating re-
alistic sensor data of a human model with ground
truth labeling. It is however important to not
that we use this data only as positive input data
to our machine learning algorithms. For neg-
ative training examples (e.g. examples where
human is visible in the data) we still use real
life data manually captured. However as the
negative training examples don’t need to be an-
notated, this process is not time intensive nor
computationally. Future work includes adding
more clothing types to the meshes and adding
additional labeled environments (floor, ceiling,
desks, ...) in the OpenGL environment in order
to get more realistic depth images.
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